Dude, Where's My Car?

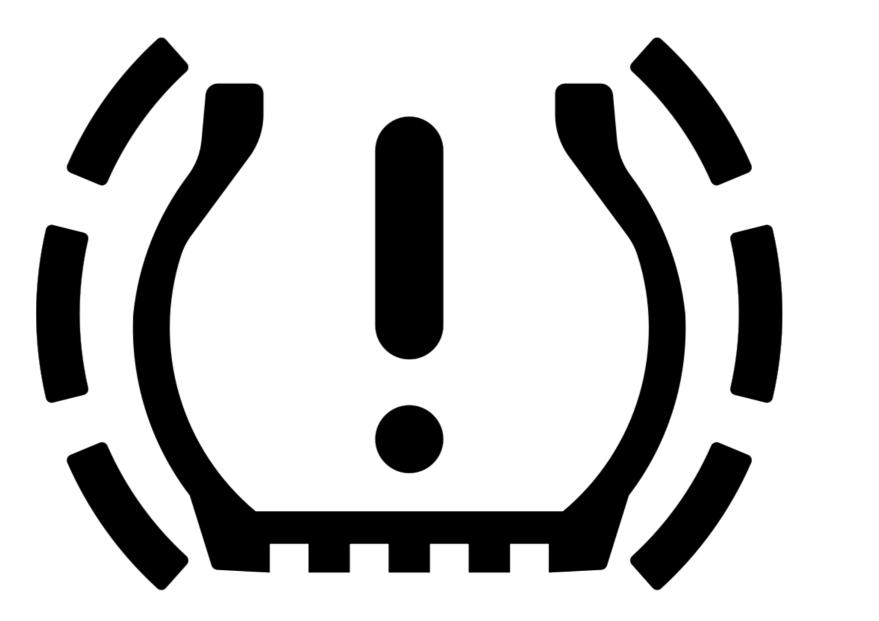
Tire Pressure Monitor Monitoring

Jared Boone ToorCon 15, October 20, 2013

An Act

To amend title 49, United States Code, to require reports concerning defects in motor vehicles or tires or other motor vehicle equipment in foreign countries, and for other purposes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,


SECTION 1. SHORT TITLE.

This Act may be cited as the "Transportation Recall Enhancement, Accountability, and Documentation (TREAD) Act".

SEC. 2. PRESERVATION OF SECTION 30118.

The amendments made to section 30118 of title 49, United States Code, by section 364 of the Department of Transportation and Related Agencies Appropriations Act, 2001 are repealed and such section shall be effective as if such amending section had not been enacted.

TREAD Act

Tire Pressure Monitoring System

The Target

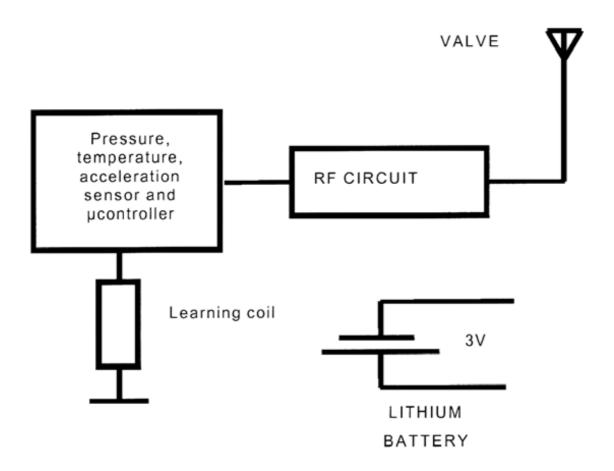
ID? Serial Number?

Frequency...

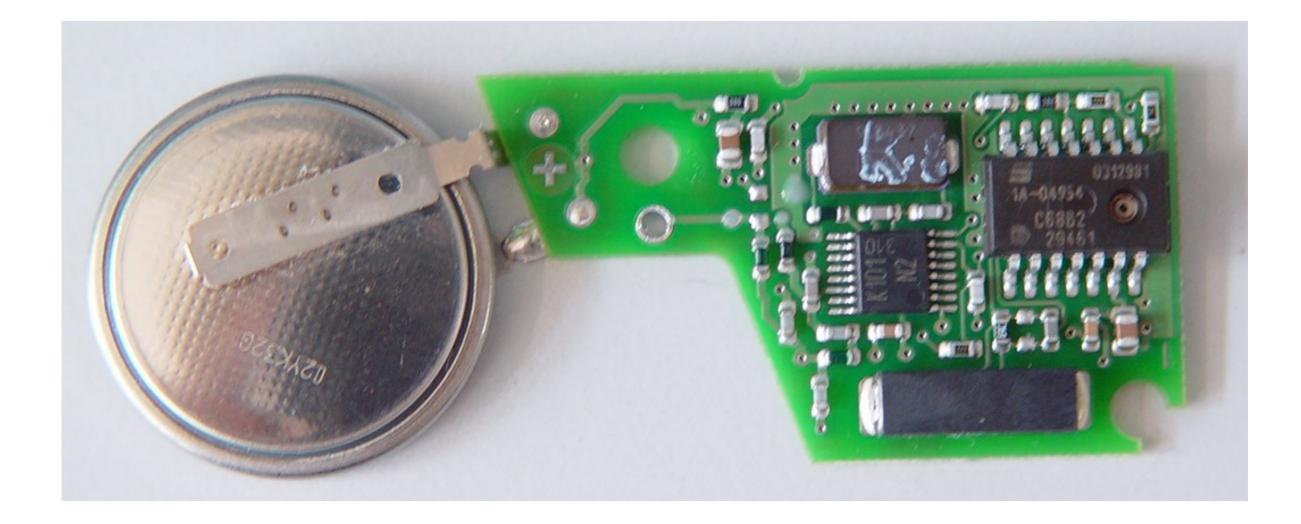
FCC ID? Heh heh heh...

3 results were found that match the search criteria: Grantee Code: kr5 Product Code: s120123

Displaying records 1 through 3 of 3.


	Display Exhibits	Grant		Name	<u>Address</u>	<u>City</u>	State	Country	<u>Zip</u> Code	Application Purpose	<u>Final</u> Action Date		<u>Upper</u> Frequency In MHz
ľ	 <u>Detail</u> Summary	<u>r</u>		Automotive	Siemensstrasse 12 SV C TS RBG EMC-Laboratory		N/A	Germany	93055	Change in Identification	02/14/2008	315.0	315.0
	<u>Detail</u> Summary	<u>e</u>	Ŵ	Automotive	Siemensstrasse 12 SV C TS RBG EMC-Laboratory		N/A	Germany	93055	Original Equipment	07/30/2003	315.0	315.0
	<u>Detail</u> Summary	<u>e</u>	100 C	Automotive	Siemensstrasse 12 SV C TS RBG EMC-Laboratory		N/A	Germany	93055	Original Equipment	10/07/2005	315.0	315.0

Perform Search Again


http://fcc.io/kr5/s120123

Block diagram

The block diagram below shows the main electronic units of the TireGuard transmitter:

No surprises here...

Internal Photo

Tire guard transmitter type S120123 which includes an integrated pressure, temperature and acceleration sensor and a 315 MHz RF transmitter.
RF receiver unit which includes a 315 MHz receiver (not described in this document)

The TireGuard system monitors a vehicle's tire pressure whilst driving or stationary. An electronic unit (wheel unit) inside each tire, mounted to the valve stem, periodically measures the actual tire pressure. By means of RF communication, this pressure information is transmitted to the RF receiver/decoder.

Operational Description

When the vehicle starts moving, the TireGuard transmitter enters the driving mode. It measures and transmits RF burst 4 times per minute up to 30 bursts. The telegram length is approximately 30ms. After this period the transmitter measures and transmits data every minute. The transmitter will remain in driving mode for a period of 10 minutes after the vehicle is stopped.

If, during any measurement period in driving mode, the pressure leakage is detected (difference compared to the last transmitted pressure value), a remeasure will occur after 5s taking in account the latest pressure value emitted as reference value. If the pressure continues changing, an additional transmission will be sent.

For normal transmission the wheel must be rotating and the device must be pressurized. For factory testing, installation testing, ect., the device has been designed to be activated also by a 125kHz signal. For homologation testing one sample was modified for CW emission, that last about 2 min. after activation with LF.

Operational Description

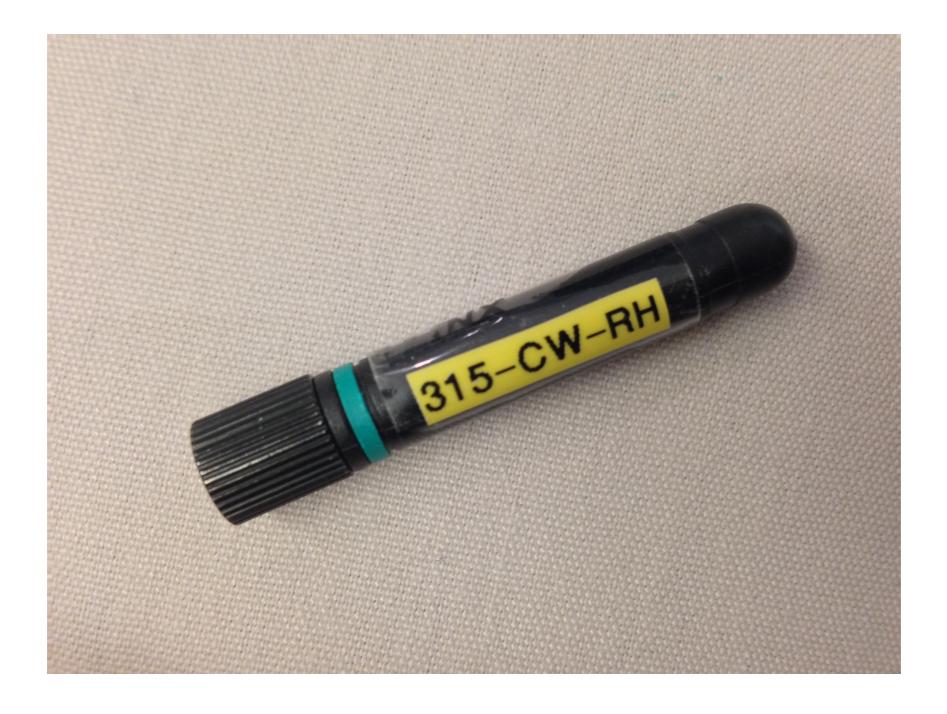
2.1 Equipment Under Test (EUT)

Device: Trade Name: Model: Serial Number: FCC ID: Power: Transmit Frequency: Type of modulation: Interface: Variants: Highest frequency generated or used in the device:

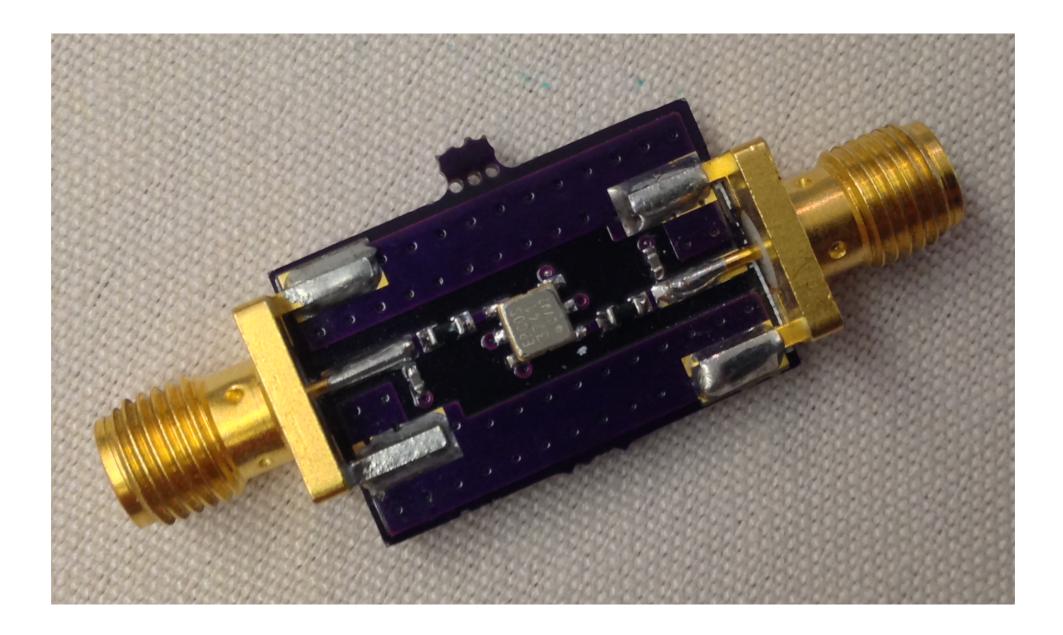
Transmitter Siemens VDO 5WY7243 TireGuard Type S120 123 none (Prototype) KR5S120123 3V DC 315 MHz FSK none

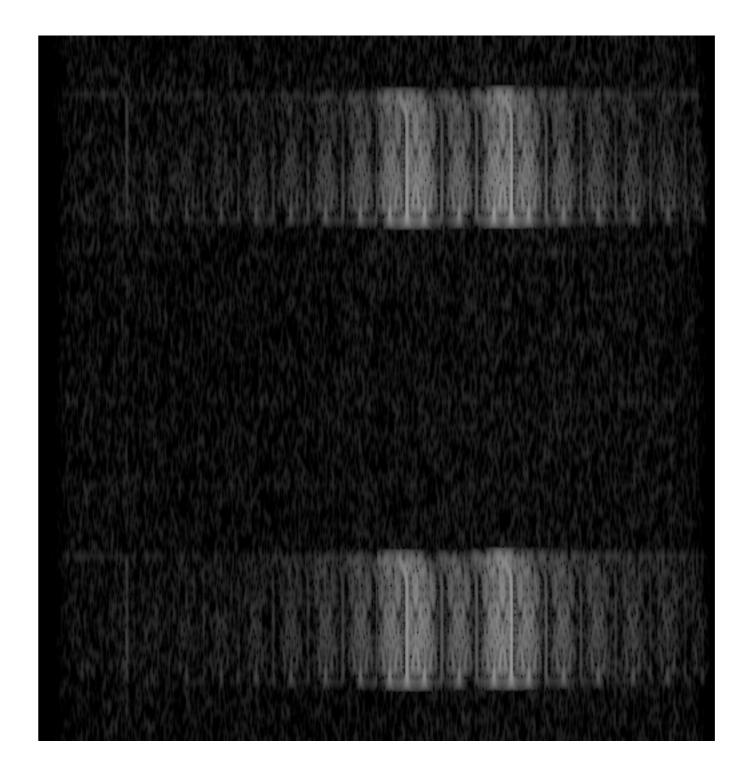
Resonator 315MHz

Test Report


Technical description

Carrier frequency: Frequency shift: Number of channels: Duty cycle: Type of modulation: Rated Output Power: Antenna: Voltage supply: Voltage supply range : 315 MHz ± 45 kHz 1 < 0.1% Frequency Shift Keying (FSK) < 10 mW integral 1 Lithium battery 3V (CR2450) 2.1 up to 3.2V


"User" Manual


RTL-SDR

Antenna

SAW Filter

RF Capture

Inspect

Observations

- Modulation: FSK
- Deviation: +/- 33 kHz
- Symbol rate: 20.15 kHz
- Carrier: 53 kHz + 314.95 MHz = 315.03 MHz

Demodulate

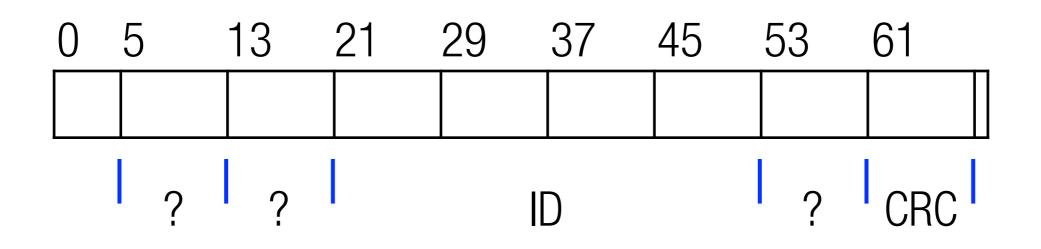
Symbols to Bits

<pre>\$ cat demodulated.txt packet_stats.pyencoding manlengthstats</pre>
Length statistics:
1: 1 2: 1
3: 1
4: 2
6: 2
8: 1
snip
67: 2
68: 2
69: 2
70: 250
71: 118 72: 61
73: 34
74: 13
75: 5
76: 3
77: 2
79: 1

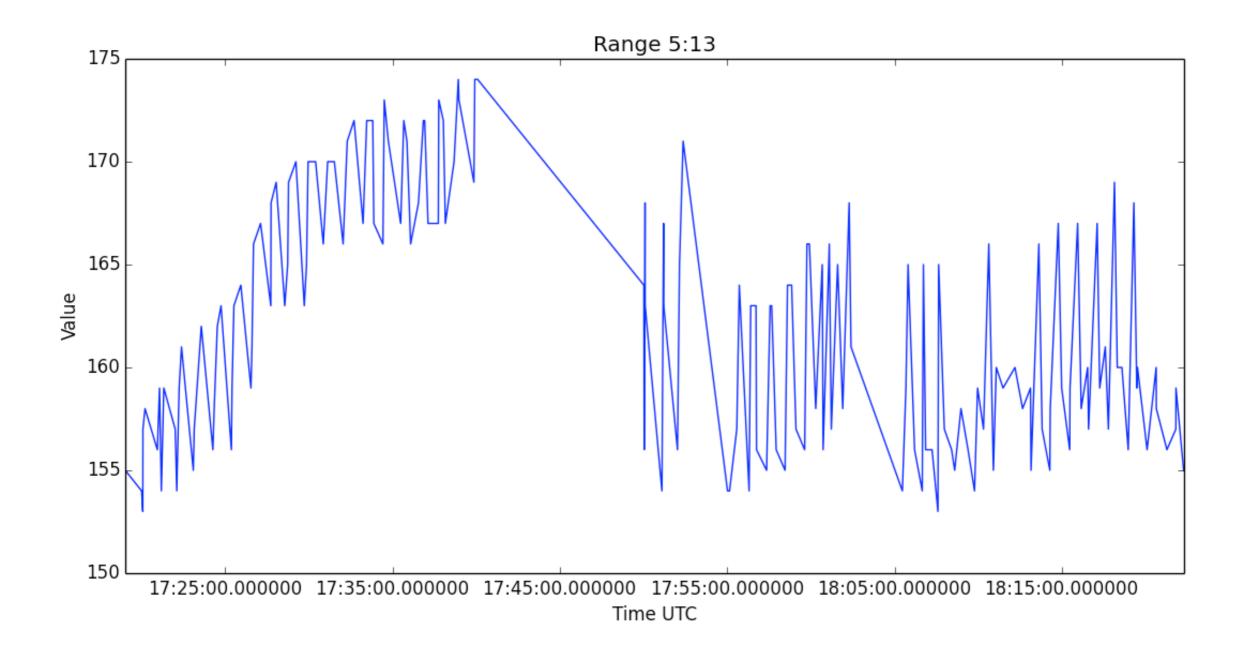
Length Stats

```
$ cat demodulated.txt | packet_stats.py --encoding man --length 70 --bitstats
Bit value statistics:
...snip...
           130/
                      131
     55:
                           99.2%
                                  1
     56:
                     131
                            0.8%
             1/ 130
                      131
                            0.0%
     57:
             0/ 131
     58:
                           84.7%
           111/
                 20
                      131
                                  * * * * * * * * * * * * * * * * * *
     59:
                      131
             0/ 131
                            0.0%
     60:
             0/ 131
                      131
                            0.0%
     61:
            69/
                 62
                      131
                           52.7%
                 66
                      131
     62:
            65/
                           49.6%
     63:
            58/
                 73
                      131
                           44.3%
                      131
     64:
            60/
                 71
                           45.8%
                 65
     65:
            66/
                     131
                           50.4%
                                  *******
            62/
                 69
                     131
     66:
                           47.3%
                                  * * * * * * * * *
     67:
            70/
                 61
                      131
                          53.4%
                                  * * * * * * * * * * *
     68:
            75/
                 56
                     131
                          57.3% *********
     69:
             0/ 131
                     131
                            0.0%
```

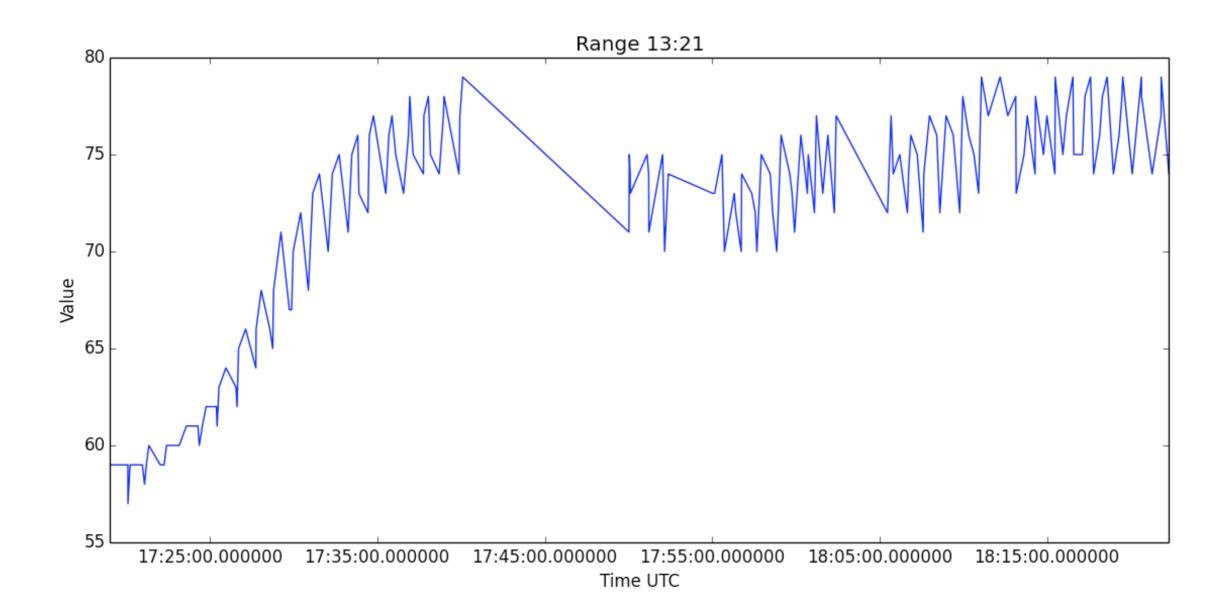
Bit Stats

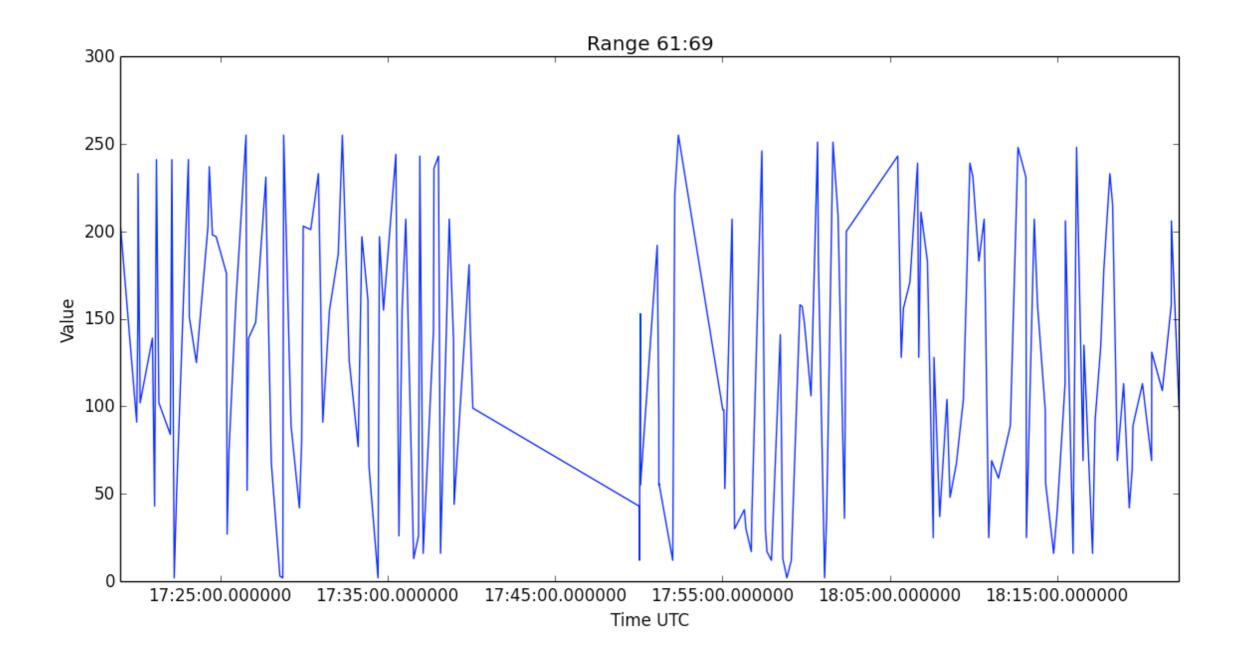

\$ cat demod	ulated.txt	packet_stats.pyencoding manlength 70rangestats
0,32		
Range 0:32		
84c9dc66	2227821670	10000100110010011101110001100110: 1
84ca3c66	2227846246	10000100110010100011110001100110: 1
84d1dc66	2228345958	10000100110100011101110001100110: 3
84d24466	2228372582	10000100110100100100010001100110: 2
84d24c66	2228374630	10000100110100100100110001100110: 3
84d25c66	2228378726	10000100110100100101110001100110: 1
84d9dc66	2228870246	10000100110110011101110001100110: 1
84d9e466	2228872294	10000100110110011110010001100110: 1
84da4466	2228896870	10000100110110100100010001100110: 1
84da4c66	2228898918	10000100110110100100110001100110: 2
84da5466	2228900966	10000100110110100101010001100110: 2
84e1dc66	2229394534	10000100111000011101110001100110: 1
84e1ec66	2229398630	10000100111000011110110001100110: 1
84e1f466	2229400678	10000100111000011111010001100110: 1
84e25466	2229425254	1000010011100010010100001100110: 4
84e25c66	2229427302	10000100111000100101110001100110: 3
84e26466	2229429350	10000100111000100110010001100110: 2
84e9cc66	2229914726	10000100111010011100110001100110: 1
84e9dc66	2229918822	10000100111010011101110001100110: 1
snip		

Bit Range Stats

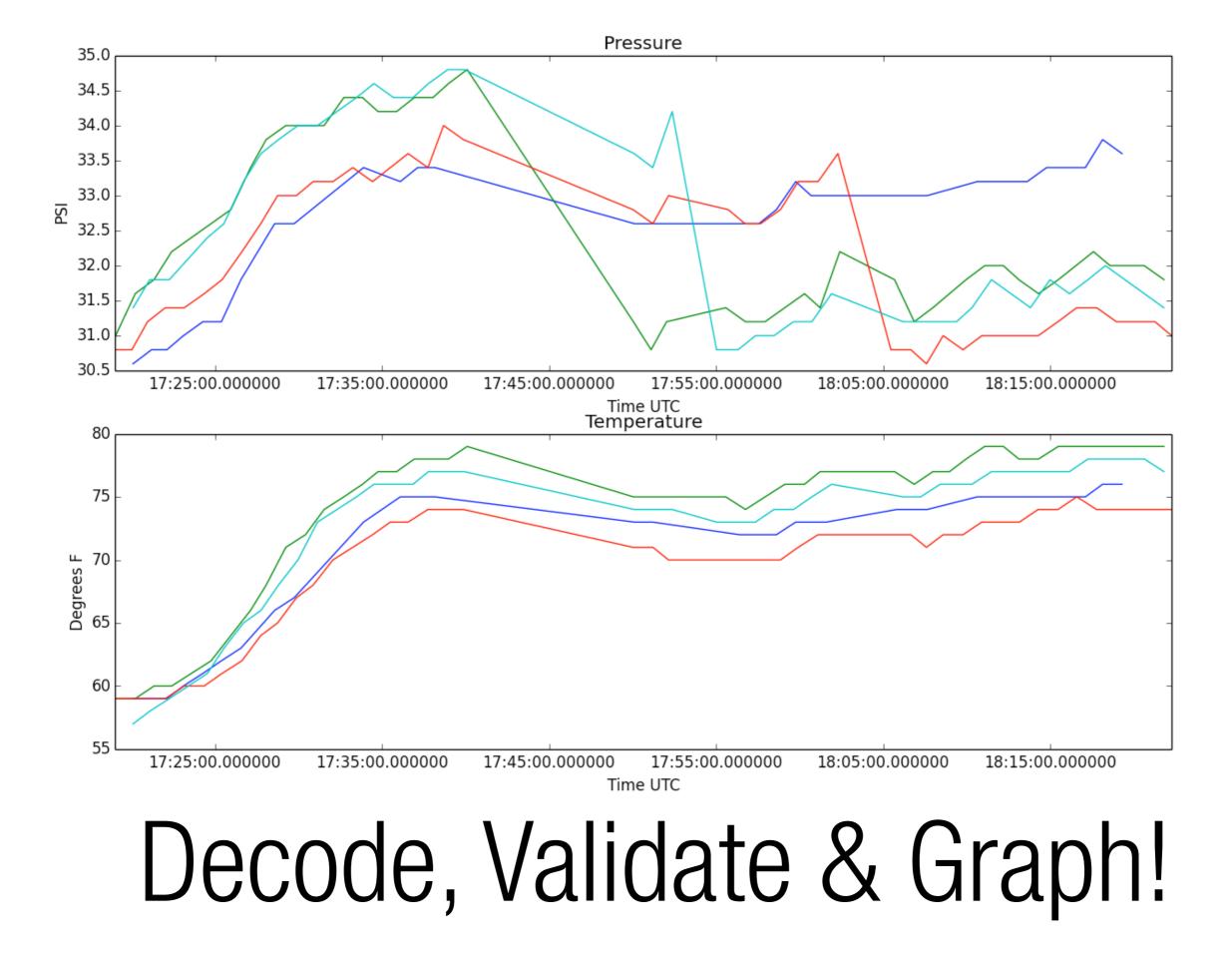

\$ cat demodu 1,33	ulated.txt	packet_stats.pyencoding man	-length 70rangestats
Range 1:33			
993b8cc	160676044	00001001100100111011100011001100:	1
99478cc		00001001100101000111100011001100:	
9a3b8cc		00001001101000111011100011001100:	
9a488cc		00001001101001001000100011001100:	-
9a498cc		00001001101001001001100011001100:	
9a4b8cc		00001001101001001011100011001100:	-
9b3b8cc		00001001101100111011100011001100:	
9b3c8cc		00001001101100111100100011001100:	
9b488cc	162826444	00001001101101001000100011001100:	1
9b498cc	162830540	00001001101101001001100011001100:	2
9b4a8cc	162834636	00001001101101001010100011001100:	2
9c3b8cc		00001001110000111011100011001100:	
9c3d8cc	163829964	00001001110000111101100011001100:	1
9c3e8cc	163834060	00001001110000111110100011001100:	1
9c4a8cc	163883212	00001001110001001010100011001100:	4
9c4b8cc	163887308	00001001110001001011100011001100:	3
9c4c8cc	163891404	00001001110001001100100011001100:	2
9d398cc	164862156	00001001110100111001100011001100:	1
9d3b8cc		00001001110100111011100011001100:	
snip			

Bit Range Stats


Bit Range Stats


Field Speculation

Field 5-12 Stats


Field 13-20 Stats

CRC Field Stats

\$ cat demodulated.txt | packet_stats.py --encoding man --length 70 --brutecrc 2 I tee brute.txt \$ bruteforce-crc --file brute.txt --width 8 --start 5 --end 61 --offs-crc 61 number of threads : 4 : 8 bits width CRC's offset : 61 calc CRC for bit offsets : 5 .. 61 (not included) final XOR : 0 reflect in : false reflect out : false truncated polynom: from 0 to 255 (MSB not shown)initial value: from 0 to 255 probe reflections : false probe final xor : false ...snip... р... -----[MATCH]------Found a model for the CRC calculation: Truncated polynom : 0x7 (7) Initial value : 0x0 (0) Final XOR : 0×0 (0) Reflected input : false Reflected output : false Message offset : from bit 5 .. 61 (end not included)

CRC Attack

Monitor All The TPMSes

- FSK very common. Haven't decoded ASK yet.
- Deviation, center frequency, bit rate varies.
- Packet layout varies. CRC/checksum varies.
- Not feasible to build a single demodulator.

Concerns

- Signals easily received from 10s of meters.
- Signals easy to demodulate and decode.
- IDs in clear. Apparently unique.
- Requires \$20 US receiver and a laptop.
- No in-field firmware update mechanism...

Implications

Industry Response

- "Nearly Impossible" to track a driver's location.
 - Weak signals.
 - Security through obscurity.
 - Expensive to deploy trackers.

Call To Action

- Get some hardware: RTL-SDR, HackRF, etc.
- Get my code: github.com/jboone/tpms
- Ride along, capture, decode signals. Contribute what you've learned.

Other Reading

 "Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring System Case Study", Rutgers & Univ. of SC.

Questions?